

JB-003-1016002

Seat No.

B. Sc. (Sem. VI) (CBCS) (W.E.F. 2016) Examination

August - 2019

Mathematics - Paper - 9

(Mathematical Analysis - II & Abstract Algebra - II) (Theory)

Faculty Code: 003

Subject Code: 1016002

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- 1 (a) Answer briefly the following questions:
 - (1) Define Compact set.
 - (2) Define similar set.
 - (3) Find the Greatest lower bound of $\left\{\frac{1}{n}/n \in N\right\}$.
 - (4) Show that $R \{2\}$ is connected.
 - (b) Answer any one out of two:

2

4

- (1) Show that A = (1, 3) and B = (3, 5) are separated set of metric space R.
- (2) For the set $E = \left[\frac{1}{3}, \frac{2}{3}\right]$ the collection $\left\{G_n / n \in N\right\}$ where $G_n = \left(\frac{1}{n}, 1\right)$ is a cover of E or not?
- (c) Answer any one out of two:

3

- (1) Determine the subset $\{-1\} \cup (0, \infty)$ of metric space R are Open, Closed, Compact and Connected.
- (2) If (X, d) is a compact metric space, Then X is totally bounded set.
- (d) Answer any one out of two:

5

- (1) A metric space (X, d) is sequential compact iff it satisfies Bolzano Weirstrass theorem.
- (2) Prove that set of all real numbers R is not Countable.

(1) Find
$$L^{-1}\left(\frac{s}{s^2+9}\right)$$

(2) Find
$$L^{-1} \left(\frac{s-1}{(s-1)^2 - 9} \right)$$

(3) Find
$$L(e^{2t}\sin 3t)$$
.

(4) Find
$$L^{-1}(t^{-1/2})$$
.

(1) Find Laplace transformation of
$$f(t) = \begin{cases} e^t, t \le 2 \\ 3, t > 2 \end{cases}$$
.

(1) Find Inverse Laplace Transformation of
$$\frac{3s+4}{s^2+16}$$
.

(2) Find Inverse Laplace Transformation of
$$\frac{s+1}{s^2+s+1}$$
.

(1) Find Inverse Laplace Transformation of
$$\frac{4s+5}{(s-1)^2+(s+2)}$$
.

(2) Find Inverse Laplace Transformation of
$$\frac{1}{\left(s^2 + 2s + 5\right)^2}.$$

(1) Find
$$L(t \sinh t)$$
.

(2) Find
$$L(t^3e^{-3t})$$
.

(3) Find
$$L(e^t \cosh 2t)$$
.

(4) Find
$$L^{-1}\left(\frac{1}{\left(s^2+a^2\right)^2}\right)$$
.

4

2

3

	(0)	Answer any one out of two:		Z
		(1)	Find $L(te^{2t}\cos 3t)$.	
		(2)	Find $L\left(\frac{1-e^t}{t}\right)$.	
	(c)	Answer any one out of two:		3
		(1)	Find $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$	
		(2)	Find $y''-y=t$, $y(0)=y'(0)=1$.	
	(d)	Answer any one out of two:		5
		(1)	Using Convolution theorem find	
			$L^{-1}\left(\frac{1}{(s+1)\left(s^2-2s+2\right)}\right)$	
		(2)	Solve $y'' + ky' - 2k^2$ $y = 0$, $y'(0) = 2k$.	
4	(a)	Answer the following questions briefly:		
		(1)	Obtain radicals of the rings $(Z_{12}, +_{12}, \times_{12})$.	
		(2)	Define Natural Mapping.	
		(3)	Define Skew - field.	
		(4)	Define Sub integral domain.	
	(b)	Ans	wer any one out of two:	2
		(1)	$U_1 = \{ f \in C[0,1] / f(0) = 0 \}$ is subring of $(C[0,1], +, *).$	
		(2)	Let $\phi:(G,*)\to(G',\Delta)$ be a homomorphism then If N is normal subgroup of G then, $\phi(N)$ is a normal Subgroup of $\phi(G)$.	
	(c)	Answer any one out of two:		3
		(1)	Prove that a field has no proper Ideal	
		(2)	A homomorphism $\phi:(G,*)\to(G',\Delta)$ is one - one iff $K_{\phi}=\{e\}$.	

3

[Contd...

JB-003-1016002]

(d) Answer any one out of two:

- **5**
- (1) State and prove First Fundamental Theorem of Homomorphism
- (2) A commutative ring with unity is a field if it has no proper Ideal.
- **5** (a) Answer briefly the following questions:

4

- (1) Find conjugate of a = -1 + 2i 3j + k.
- (2) Find norm of 2+i+2j+4k.
- (3) What do you mean by Quadratic polynomials?
- (4) What do you mean by Linear Polynomials?
- (b) Answer any **one** out of two:

2

- (1) Simplify: $(1+2j-3k)^{-2}$.
- (2) If $f = (2, 0, -3, 0, 4, 0, \dots)$ and $g = (1, -2, 0, 0, \dots)$ are polynomials of R[X] then find f + g.
- (c) Answer any one out of two:

3

- (1) State and prove Remainder theorem
- (2) State and prove Factor theorem
- (d) Answer any one out of two:

5

- (1) Factorize $f(x) = x^4 + 4 \in \mathbb{Z}_5[X]$ by using Factor theorem.
- (2) Find g. c. d. of $f(x) = 6x^3 + 5x^2 2x + 25$ and $g(x) = 2x^3 3x + 5 \in R[X]$ and express it in the form a(x) f(x) + b(x) g(x).